Чем больше техпроцесс тем лучше
Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников
Содержание
Содержание
Одна из главных характеристик процессоров и других микрочипов — техпроцесс. Что означает этот термин и насколько он влияет на производительность — разберемся в этом блоге.
Что такое техпроцесс
Ключевым элементом практически каждой вычислительной схемы является транзистор. Это полупроводниковый элемент, который служит для управления токами. Из транзисторов собираются основные логические элементы, а на их основе создаются различные комбинационные схемы и уже непосредственно процессоры.
Чем больше транзисторов в процессоре — тем выше его производительность, ведь можно поместить на кристалл большее количество логических элементов для выполнения разных операций.
В 1971 году вышел первый микропроцессор — Intel 4004. В нем было всего 2250 транзисторов. В 1978 мир увидел Intel 8086 и в нем помещались целых 29 000 транзисторов. Легендарный Pentium 4 уже включал 42 миллиона. Сегодня эти числа дошли до миллиардов, например, в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.
Модель | Год выпуска | Кол-во транзисторов |
Xeon Broadwell-E5 | 2016 | 7 200 000 000 |
Ryzen 5 1600 X | 2017 | 4 800 000 000 |
Apple A12 Bionic (шестиядерный ARM64) | 2018 | 6 900 000 000 |
Qualcomm Snapdragon 8cx | 2018 | 8 500 000 000 |
AMD Ryzen 7 3700X | 2019 | 5 990 000 000 |
AMD Ryzen 9 3900X | 2019 | 9 890 000 000 |
Apple M1 ARM | 2020 | 16 000 000 000 |
Много это или мало? На 2020 год на нашей планете приблизительно 7,8 миллиардов человек. Если представить, что каждый из них это один транзистор, то полтора населения планеты
с легкостью поместилась бы в процессоре Apple A14 Bionic.
В 1975 году Гордон Мур, основатель Intel, вывел скорректированный закон, согласно которому число транзисторов на схеме удваивается каждые 24 месяца.
Нетрудно посчитать, что с момента выхода первого процессора до сего дня, а это всего-то 50 лет, число транзисторов увеличилось в 10 000 000 раз!
Казалось бы, поскольку транзисторов так много, то и схемы должны вырасти в размерах на несколько порядков. Площадь кристалла у первого процессора Intel 4004 — 12 мм², а у современных процессоров AMD Epyc — 717 мм² (33,5 млрд. транзисторов). Получается, по площади кристалла процессоры выросли всего в 60 раз.
Как же инженерам удается втискивать такое огромное количество транзисторов в столь маленькие площади? Ответ очевиден — размер транзисторов также уменьшается. Так
и появился термин, который дал обозначение размеру используемых
полупроводниковых элементов.
Упрощенно говоря, техпроцесс — это толщина транзисторного слоя, который применяется в процессорах.
Чем мельче транзисторы, тем меньше они потребляют энергии, но при этом сохраняют текущую производительность. Именно поэтому новые процессоры имеют большую вычислительную мощность, но при этом практически не увеличиваются в размерах
и не потребляют киловатты энергии.
Какие существуют техпроцессы: вчера и сегодня
Первые микросхемы до 1990-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Если вам трудно представить, насколько небольшая величина в 3 микрометра, то давайте узнаем, сколько транзисторов может поместиться в ширине человечного волоса.
Уже тогда транзисторы были настолько маленькими, что пару десятков с легкостью помещались в толщине человеческого волоса. Сейчас техпроцесс принято соотносить с длиной затвора транзисторов, которые используются в микросхеме. Нынешние транзисторы вышли на размеры в несколько нанометров.
Для Intel актуальный техпроцесс — 14 нм. Насколько это мало? Посмотрите в сравнении
с вирусом:
Однако по факту текущие числа — это частично коммерческие наименования. Это означает, что в продуктах по техпроцессу 5 нм на самом деле размер транзисторов не ровно столько, а лишь приближенно. Например, в недавнем исследовании эксперты сравнили транзисторы от Intel по усовершенствованному техпроцессу 14 нм и транзисторы от компании TSMC на 7 нм. Оказалось, что фактические размеры на самом деле отличаются не на много, поэтому величины на самом деле относительные.
Рекордсменом сегодня является компания Samsung, которая уже освоила техпроцесс 5 нм. По нему производятся чипы Apple A14 для мобильной техники. Одна из последних новинок Apple M1 — первый ARM процессор, который будет установлен в ноутбуках от Apple.
Продукцию по техпроцессу в 3 нм Samsung планирует выпускать уже к 2021 году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами.
Насколько маленьким может быть техпроцесс
Уменьшение размеров транзисторов позволяет делать более энергоэффективные и мощные процессоры, но какой предел? На самом деле ответа никто не знает.
Проблема кроется в самой конструкции транзистора. Уменьшение прослойки между эмиттером и коллектором приводит к тому, что электроны начинают самостоятельно просачиваться, а это делает транзистор неуправляемым. Ток утечки становится слишком большим, что также повышает потребление энергии.
Не стоит забывать, что каждый транзистор выделяет тепло. Уже сейчас процессоры Intel Core i9-10ХХХ нагреваются до 95 градусов Цельсия, и это вполне нормальный показатель. Однако при увеличении плотности транзисторов температуры дойдут до таких пределов, когда даже водяное охлаждение окажется полностью бесполезным.
Самые смелые предсказания — это техпроцесс в 1,4 нм к 2029 году. Разработка еще меньших транзисторов, по словам ученых, будет нерентабельной, поэтому инженерам придется искать другие способы решения проблемы. Среди возможных альтернатив — использование передовых материалов вместо кремния, например, графена.
7 нм против 12: о чем говорит технологический процесс процессора
Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…
Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.
Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.
Что собой в принципе представляет каждый микропроцессор
Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.
Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.
Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.
1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.
2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.
3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.
4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.
5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.
6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.
7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.
8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.
9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.
10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.
11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.
12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.
13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.
14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.
Какие этапы проходят процессоры во время производства
Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.Хронология уменьшения размера технологического процесса
’70-е:
3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
350 нм — Intel, IBM, TSMC к 1997-му;
250 нм — Intel, 1998 год;
180 нм — Intel и AMD, 1999 год.
’00-е:
130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
90 нм — Intel в 2002–2003 годах;
65 нм — Intel в 2004–2006 годах;
45–40 нм — Intel в 2006–2007 годах;
32–28 нм — Intel в 2009–2010 годах;
22–20 нм — Intel в 2009–2012 годах;
’10-е:
14–16 нм — Intel наладила производство таких процессоров к 2015 году;
10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2017 году;
7 нм — TSMC, 2018 год;
6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
Чем меньше нанометров в технологическом процессе, тем:
Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.
Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.
В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.
Почему с уменьшением техпроцесса современных процессоров сильно увеличивается скорость их деградации
Деградация – это естественный процесс разрушения внутренних элементов процессора в процессе его эксплуатации, который, возникает от воздействия, протекающего через его внутренние элементы электрического тока и воздействия на них высоких температур. Это приводит к постепенному ухудшению его технических характеристик (параметров), вплоть до его полного выхода из строя.
реклама
Признаком деградации процессора является невозможность, спустя некоторое время, работать на своих штатных (разогнанных – стабильных) параметрах (частоте, напряжении питания). Проявляется это в возникновении в определенный момент, и все более частом появлении с течением времени «синих экранов», внезапных выключений, перезагрузок компьютера, возникновении ошибок при прохождении различных тестов. Устраняется это увеличением напряжения питания процессора, или снижением тактовой частоты процессора. Но через некоторое время симптомы повторяются, и требуется дальнейшее повторение вышеуказанных манипуляций. Но наступает момент, когда уже нельзя больше поднимать напряжение питания, и остается лишь снижать тактовую частоту процессора, тем самым снижая его производительность.
Ну а теперь немного «физики» процессов, происходящих при деградации.
Процессор состоит из множества элементов: транзисторов, резисторов, конденсаторов, диэлектрических изолирующих слоев, металлических межсоединений, и другого.
реклама
реклама
Еще одно воздействие высокой температуры – это деградация МОП транзисторов, происходящая при повышенной температуре, выше 85 градусов и отрицательном напряжении на затворе транзистора. Это приводит сначала к образованию ловушек, а затем захвата ловушками дырок из канала в подзатворном окисле. Эта деградация происходит без протекания тока через канал транзистора.
А при воздействии тока, со временем можно наблюдать такой процесс, как электромиграция. Это физическое перемещение атомов металла под воздействием протекающего через металлические шины тока. Вследствие электромиграции возможно появление утолщений (скопление атомов металла) в одном месте, и образование пустот в другом месте. Металлическая разводка в кристалле процессора очень плотная. И соседние металлические шины расположены друг от друга, на минимально допустимом по технологии расстоянии. И утолщение одной из шин может привести к закорачиванию с соседней шиной.
Что может привести, как к повышению токов утечки, так и полному замыканию и отказу одного из участка схемы и как следствие неработоспособности всей схемы. Образование пустот в металлических шинах, напротив, может привести к обрыву шины, и не возможности передачи по ней сигналов, или же к значительному увеличению сопротивления в месте возникновения пустоты, и недопустимому затуханию (потери) сигнала на этом участке, что также приведет к неработоспособности всей схемы в целом.
реклама
На изображениях сделанных электронным микроскопом видно состояние металлической шины после длительного влияния вышеуказанных факторов. Тут видно и образование утолщений и образование разрывов вызванных протеканием тока.
А на этом снимке темная область – это пустота, образовавшаяся внутри металлической шины.
Деградация МОП транзисторов, при протекании через них тока происходит следующим образом: под воздействием протекающего электрического тока по цепи исток – канал – сток, из области истока происходит диффузия ионов металла в полупроводниковую область канала. Тем самым делая канал МОП транзистора проводником электрического тока. При малой концентрации ионов металла в канале МОП транзистора, происходит увеличение тока утечки, и как следствие увеличивается тепловыделение процессора, и его температура, процессор при этом начинает сбоить. В этом случае помогает увеличение запирающего напряжения на затворе транзистора, которого можно достичь поднятием общего напряжения питания процессора. Но при этом еще больше увеличится температура и токи, что еще больше ускорит деградацию и ухудшение всех параметров процессора. При дальнейшем увеличении концентрации ионов в канале МОП транзистора, сопротивление канала становится очень низким, через него начинает протекать ничем не регулируемый ток, и работоспособность всей схемы процессора нарушается.
Деградация параметров МОП транзисторов под воздействием горячих (высокоэнергетических) носителей заряда происходит по причине инжекции этих носителей заряда разогнавшихся в электрическом поле канала транзистора, и обладающих необходимой энергией для преодоления барьера Si-SiO2 (полупроводник – окисел) в подзатворный окисел, оседая, и накапливаясь там.
Теперь зная физические процессы, происходящие в кристалле процессора, разберемся, почему же все современные процессоры, производящиеся по техпроцессам с малыми значениями, подвержены деградации в разы быстрее, чем например их предшественники 7 – 15 летней давности. С уменьшением техпроцесса происходит уменьшение всех внутренних элементов процессоров, увеличивается плотность упаковки элементов. Например, уменьшение толщины диэлектрика, уже само по себе снижает его электрическую прочность (напряжение, при котором произойдет его пробой), так еще и увеличивается электрическое поле, воздействующее на диэлектрик между сблизившимися обкладками конденсатора или металлическими соединительными шинами. Как мы помним из курса школьной физики уменьшение толщины диэлектрика между обкладками конденсатора, и сближение обкладок друг с другом, приводит к увеличению электрического поля между ними. Что приведет к более быстрому разрушению диэлектрика в современных процессорах, нежели это происходило в старых процессорах, где толщина диэлектрика в разы больше. При уменьшении поперечного сечения металлических соединительных шин и размеров МОП транзисторов, происходит увеличение плотности тока протекающего через них, что приводит к ускоренному развитию пустот и расширений на металлических шинах и электромиграции ионов металла в каналы МОП транзисторов.
Процесс деградации будет сильно ускорен при неправильном разгоне процессора, при котором напряжение питания будет сильно завышено. И при неправильном температурном режиме процессора.
Таким образом, благодаря современным техпроцессам производства процессоров, теперь абсолютно любой пользователь станет свидетелем деградации своего процессора, после хотя бы пятилетнего периода его использования. Чего не могли предоставить пользователям старые процессоры с большими техпроцессами. Ну, например Pentium 4 (техпроцесс 90 нм.) или FX 8320 (техпроцесс 32 нм.), у которых деградация не сильно то и проявлялась, и через десятилетия их использования. А у современных процессоров, например у Intel Core i9-10900 техпроцесс 14 нм., у Ryzen 9 5950X техпроцесс 7 нм., ну не совсем и честных нужно сказать, хитрят, опять хитрят хитрецы, деградация даст о себе знать уже лет через 3 – 5. Пожалуй Ryzen 9 5950X будет лидером в гонке деградации.
Ну и эти свойства современных процессоров накладывают особенность при их покупке на вторичном рынке. Если б/у процессоры старых годов выпуска можно было покупать не опасаясь, что их параметры уже не те, так как нужно было очень сильно постараться, чтобы подвергнуть их сколь-нибудь заметной деградации. То современные б/у процессоры, можно с большой вероятностью приобрести уже «убитыми». Ибо их деградация успела посетить основательно. Нужно иметь это ввиду при покупке б/у современных процессоров.
Хотя может и правильно, что ресурс в современные процессоры закладывается на период времени их актуальности, на срок 3 – 5 лет. А не так как старые процессоры, которые работают уже по 20 лет без признаков деградации, но морально устарели уже как лет 15 тому назад.
Заметили ли вы деградацию своего процессора, или еще нет? Пишите в комментариях.